Introduction
The initial instalment of my recent series of articles on domain name discovery[1] considered the use of phonotactic analysis - that is, the measure of the similarity of a string to the 'corpus' of other words in a language - to identify available unregistered candidate domains which may be of interest for potential brandability. This filtering process is necessary because of the large universe of domains which must be assessed. Considering just 5-character alphabetics .com domains, for example, there are approximately 9 million unregistered combinations of characters (as the SLD, or second-level domain name - i.e. the part to the left of the dot), out of the 'pool' of around 12 million possible names (from aaaaa.com to zzzzz.com).
Phonotactic analysis is a powerful tool, but does have some shortcomings - not least, it is computationally slow to calculate the phonotactic 'violation score' for a string of characters, but additionally it typically still retains large numbers of candidate domains within any given score window, and furthermore the 'mapping' of score to brandable desirability is not always 'clean' (i.e. many domains which are (subjectively) attractive do not always generate low violation scores).
In this follow-up, I start to explore additional frameworks for filtering the large sets of candidate domain names, considering the inherent structure of the SLD strings themselves. This type of approach would allow would-be brand owners to specify a preference as to the 'type' of brand name they may be looking to use, based on analogy with other brand names, words or strings (and potentially also allows for further filtering based on factors such as preferred initial letters, etc.), but without having to specify a specific exact string or keyword which they would like the brand name to resemble (as in the methodology proposed for 'variant string' domain names in another recent study[2]).
Framework
As was also the case for the phonotactic method, the framework considered in this initial study relates to classification of domain names according to their high-level phonetic characteristics, but using a much simplified approach (and with negligible computational overhead to calculate) in which the constituent characters (consonants / vowels) are categorised into groups.
The groupings are based on the standard classifications for (English) consonant phonemes (i.e. unique sounds), in which they are classified according to the positions (in the vocal tract) and manners of articulation, within speech[3,4].
For simplicity, I consider one of the original datasets utilised in the initial study - that is, the set of (as of the time of original analysis) unregistered, 5-character .com domain names with SLDs of the form CVCVC (C = consonant, V = vowel, noting that a 'y' is also accepted where it appears in a 'vowel' position). In general, there is no one-to-one mapping between individual characters and phonemes, due to factors such as variabilities in pronunciation and the existence of character combinations (especially phonemes such as 'ch', 'sh', 'ng', etc.). However, the use of the CVCVC pattern means that a 'cleaner' mapping can be assigned (since, for example, no consonant pairs will arise) and the utilised groupings are shown in Table 1. The overall classification of any given SLD string is then based just on the consonants present within the string (which are deemed to determine the high-level 'structure' of the word).
Top-level group |
Group |
Type |
Consonants |
---|---|---|---|
1 (plosive) | 1A | Bilabial plosive | b, p |
1 (plosive) | 1B | Alveolar plosive | d, t |
1 (plosive) | 1C | Velar plosive | c, g, k, q |
2 (nasal) | 2A | Bilabial nasal | m |
2 (nasal) | 2B | Alveolar nasal | n |
3 (fricative) | 3A | Labiodental fricative | f, v |
3 (fricative) | 3B | Alveolar fricative | s, x, z |
3 (fricative) | 3C | Glottal fricative | h |
4 (approximant) | 4A | Labial-velar approximant | w |
4 (approximant) | 4B | Retroflex approximant | r |
4 (approximant) | 4C | Palatal approximant | y |
5 (lateral approximant) | 5A | Alveolar lateral approximant | l |
6 (affricate) | 6A | Postalveolar affricate | j |
Table 1: Groupings assigned to individual consonants as used in the analysis
In order to give a less granular framework, and cluster together words comprising (at a higher level) similar 'types' of sounds, the phoneme groups are combined into 'top-level groups' based on their manners of articulation (plosive, nasal, etc.), as shown in Table 1.
This methodology means that all CVCVC strings can be defined according to the top-level groups of their three consonants (i.e. characters 1, 3 and 5) and thereby expressed as a three-digit 'code' (the 'word type'). For example, the brand 'rolex' would be assigned word type 435 (since 'r' appears in consonant group 4, 'l' in group 5, and 'x' in group 3). In total, therefore, there are 216 (i.e. 6 × 6 × 6) distinct possible word types (from 111 to 666).
Analysis
Utilising the above framework, the 137,648 unregistered CVCVC .com domain names from the original study can be categorised into these 216 groups, based on their SLDs. As an initial round of analysis, it is informative to assess whether the domains assigned to each of the specific 216 word types tend (on average) to be associated with lower or higher phonotactic violation scores (as per the original study) - i.e. whether they comprise more or less 'credible' candidate words / brand names. This analysis is shown in Appendix A.
The data can also be visualised by plotting the spread of phonotactic violation scores of the domains within each group (Figure 1, in which the word types are sorted into their ranking order (Appendix A) from lowest ('best') to highest ('worst') mean phonotactic violation score - e.g. rank 1 = word type 225, etc).
Figure 1: Spread of phonotactic violation scores of the domains within each word-type group (sorted from lowest to highest mean phonotactic violation score (shown in red))
Examples of the individual domain SLDs (i.e. candidate brandable names) within each of the top four (i.e. lowest mean phonotactic violation score) groups are listed below for illustration (with their phonotactic scores shown in brackets in each case) (full lists shown in Appendix B).
- Word type 225 - memyl (0.00), munyl (1.63), nemul (0.00), nenyl (0.00)
- Word type 525 - lemyl (0.00), limyl (1.05), lunyl (0.93), lynul (0.00)
- Word type 555 - lalyl (0.90), lelyl (0.00), lylel (1.05), lylul (1.05)
- Word type 125 - banyl (0.12), cemyl (0.00), dimyl (0.00), gamyl (0.70)
Whilst in these specific cases, the actual strings may not, in general, be enormously compelling as brandable examples, the approach does broadly seem to behave in the intended way (i.e. in allowing the extraction of groups of 'similar' names to be reviewed in bulk, without relying on phonotactic score, whose behaviour is perhaps less predictable); the key 'art' to this approach might be in determining which word types tend to make the 'best' brandable candidates (and this may not necessarily always be those with the lowest phonotactic scores).
For comparison, examples of the names in the highest scored ('worst') group are shown below (full list shown in Appendix B).
- Word type 664 - jajew (8.94), jejir (2.71), jojey (7.70), jyjar (5.84)
How do these groupings 'map' to those sets of names independently considered to be credible examples for brandability? One approach to answering this question involves looking at the domains offered for sale on brandable name marketplaces, on which the names have already been reviewed for suitability and deemed credible. In this case, I consider the top 2,000 5-character (SLD) names offered for sale on the domain marketplace Atom.com[5] (filtering the results by requesting the inclusion only of 'made-up' names (since dictionary terms will presumably automatically be deemed more attractive, regardless of their phonetic characteristics), names up to two syllables, and sorting the results by the 'most popular' - though in this case, additional factors, such as domain asking-price, may become a factor).
Of these 2,000 names, 390 match the CVCVC pattern considered in this study. Table 2 shows the top ten word types represented within this dataset. Note that these most popular brand name word types are not, in general, those which were found to be most highly ranked (according to their mean phonotactic score) in the previous analysis.
Word type |
No. domains |
Word type ranking in phonotactic study (/ 216) |
---|---|---|
133 | 21 | 91 |
334 | 21 | 149 |
313 | 18 | 100 |
331 | 18 | 129 |
335 | 16 | 82 |
113 | 15 | 89 |
332 | 14 | 79 |
333 | 14 | 103 |
131 | 14 | 101 |
312 | 12 | 40 |
Table 2: Top ten word types represented in the dataset of most popular CVCVC names on the Atom.com domain marketplace
Again for illustration, the SLDs of the 21 domains assigned to the most common word-type group (for the set of ‘popular’ domains on Atom.com considered in this analysis) are listed below (again with their phonotactic scores shown in brackets).
Word type 133:
- casux (0.00)
- qafus (3.57)
- qovox (3.70)
- buvas (3.57)
- buxas (1.05)
- dosox (-)
- pevox (-)
- cuvax (-)
- buvax (-)
- koxas (0.41)
- tevav (-)
- kisiv (1.08)
- qovax (5.19)
- cuvux (14.73)
- qasus (1.05)
- qovas (1.55)
- dezox (-)
- pizah (2.04)
- kavux (5.38)
- bivoz (7.78)
- tyvix (1.55)
Again, we see a lack of correlation of (just) phonotactic score with the subjective measure of desirability denoted by the inclusion of the names on the marketplace; the mean phonotactic violation score across the set of 390 CVCVC names taken from Atom.com is actually relatively high (3.36) (see Appendix C). Of course, it is a matter of opinion how 'good' these names 'actually' are, compared with any of the other candidates identified in these studies.
Discussion
What does all this tell us? One key take-away is that phonotactic scores in isolation do not provide a very good measure of the credibility of a domain name as a candidate for brandability (assuming that there is a possibility for any sort of non-subjective measure of desirability!), but that other simple groupings of names based on high-level phonetic characteristics (e.g. 'word types') of the strings in question can provide a basis for filtering candidate names for review.
The framework presented here is an extremely simplistic one, and it is likely that enhancements will be necessary in order to be able to generalise the approach at all - to take account, for example, of strings of differering lengths, alternative consonant / vowel patterns, inclusion of diphthongs or longer character combinations, or variability in the pronunciation of individual characters (such as treating the 'c' in 'ca*', 'co*' and 'cu*' (generally hard) differently from that in 'ce*' and 'ci*' (generally soft)).
Nevertheless, this type of approach does provide the potential for specifying the 'type' of word which may be of interest for a potential brand name, and using this specification as a basis for filtering the huge set of unregistered names which are to be considered. It is fair to say that we are still some way from being able to say that certain word types make 'better' brandable candidates, but it may be the case that extensive review of datasets by branding and marketing experts may help us move in this direction. If - for instance - we assume that word type 133 is a 'good' one for CVCVC names to serve as brandable candidates, based on the examples listed on the Atom.com marketplace, this would provide some basis for starting to review the huge set of unregistered .com names from the original study. There are 5,118 type-133 names in the original dataset (out of the 'pool' of over 137,000 CVCVC names), and some of these will undoubtedly be credible candidates for brandability. Exactly which ones will be a subjective matter of opinion, but examples might include names such as cisyx, civyz, cyfax, cyxix, doxiz, dyxix, gyfex, kysix, pyxox, qaxix, qizox, qyxes and toxiz.
* * * * *
Appendix A: Phonotactic analysis of the groupings of the unregistered CVCVC .com domains from the original study
Word type |
No. domains (N) |
Mean phonotactic violation score of domains in group |
Ranking |
---|---|---|---|
225 | 15 | 0.41 | 1 |
525 | 4 | 0.50 | 2 |
555 | 4 | 0.75 | 3 |
125 | 84 | 0.82 | 4 |
222 | 23 | 0.92 | 5 |
425 | 39 | 0.98 | 6 |
512 | 85 | 0.99 | 7 |
122 | 175 | 1.14 | 8 |
215 | 77 | 1.19 | 9 |
422 | 73 | 1.27 | 10 |
625 | 12 | 1.35 | 11 |
255 | 12 | 1.36 | 12 |
155 | 85 | 1.38 | 13 |
322 | 125 | 1.39 | 14 |
252 | 4 | 1.43 | 15 |
325 | 47 | 1.44 | 16 |
622 | 28 | 1.45 | 17 |
522 | 14 | 1.51 | 18 |
115 | 577 | 1.65 | 19 |
152 | 49 | 1.66 | 20 |
212 | 158 | 1.67 | 21 |
265 | 15 | 1.76 | 22 |
315 | 407 | 1.82 | 23 |
415 | 226 | 1.92 | 24 |
352 | 18 | 1.98 | 25 |
112 | 1,074 | 2.00 | 26 |
615 | 84 | 2.00 | 27 |
235 | 43 | 2.08 | 28 |
612 | 161 | 2.09 | 29 |
355 | 57 | 2.09 | 30 |
565 | 14 | 2.12 | 31 |
412 | 401 | 2.16 | 32 |
552 | 5 | 2.18 | 33 |
221 | 225 | 2.20 | 34 |
655 | 13 | 2.21 | 35 |
551 | 46 | 2.27 | 36 |
251 | 85 | 2.28 | 37 |
455 | 41 | 2.32 | 38 |
515 | 41 | 2.33 | 39 |
312 | 792 | 2.33 | 40 |
553 | 28 | 2.37 | 41 |
532 | 48 | 2.37 | 42 |
135 | 427 | 2.38 | 43 |
151 | 556 | 2.40 | 44 |
521 | 130 | 2.41 | 45 |
121 | 1,245 | 2.54 | 46 |
153 | 400 | 2.54 | 47 |
132 | 752 | 2.55 | 48 |
452 | 26 | 2.59 | 49 |
165 | 129 | 2.65 | 50 |
513 | 534 | 2.70 | 51 |
451 | 257 | 2.71 | 52 |
453 | 152 | 2.75 | 53 |
123 | 955 | 2.78 | 54 |
351 | 412 | 2.79 | 55 |
523 | 80 | 2.82 | 56 |
254 | 49 | 2.82 | 57 |
421 | 532 | 2.83 | 58 |
432 | 281 | 2.84 | 59 |
465 | 55 | 2.89 | 60 |
511 | 760 | 2.89 | 61 |
232 | 93 | 2.94 | 62 |
223 | 158 | 2.96 | 63 |
262 | 26 | 2.99 | 64 |
621 | 176 | 3.00 | 65 |
665 | 15 | 3.03 | 66 |
154 | 218 | 3.05 | 67 |
253 | 62 | 3.11 | 68 |
213 | 1,122 | 3.14 | 69 |
632 | 105 | 3.17 | 70 |
353 | 284 | 3.19 | 71 |
365 | 109 | 3.22 | 72 |
321 | 992 | 3.22 | 73 |
535 | 31 | 3.23 | 74 |
531 | 592 | 3.24 | 75 |
435 | 162 | 3.29 | 76 |
424 | 192 | 3.29 | 77 |
423 | 383 | 3.29 | 78 |
332 | 565 | 3.30 | 79 |
323 | 710 | 3.31 | 80 |
354 | 182 | 3.32 | 81 |
335 | 308 | 3.32 | 82 |
211 | 1,434 | 3.37 | 83 |
226 | 70 | 3.40 | 84 |
554 | 26 | 3.47 | 85 |
454 | 91 | 3.47 | 86 |
456 | 71 | 3.48 | 87 |
533 | 445 | 3.51 | 88 |
113 | 5,988 | 3.51 | 89 |
562 | 14 | 3.53 | 90 |
133 | 5,118 | 3.53 | 91 |
233 | 853 | 3.55 | 92 |
145 | 241 | 3.56 | 93 |
124 | 518 | 3.58 | 94 |
623 | 118 | 3.60 | 95 |
514 | 279 | 3.60 | 96 |
413 | 2,376 | 3.62 | 97 |
652 | 7 | 3.65 | 98 |
645 | 32 | 3.66 | 99 |
313 | 4,733 | 3.69 | 100 |
131 | 6,740 | 3.69 | 101 |
111 | 7,833 | 3.73 | 102 |
333 | 3,805 | 3.76 | 103 |
433 | 1,872 | 3.81 | 104 |
245 | 41 | 3.85 | 105 |
524 | 50 | 3.85 | 106 |
411 | 3,225 | 3.87 | 107 |
114 | 2,832 | 3.87 | 108 |
224 | 96 | 3.90 | 109 |
414 | 1,104 | 3.90 | 110 |
231 | 1,140 | 3.91 | 111 |
324 | 409 | 3.92 | 112 |
266 | 51 | 3.93 | 113 |
314 | 2,297 | 3.94 | 114 |
126 | 332 | 3.94 | 115 |
633 | 709 | 3.95 | 116 |
311 | 6,734 | 3.95 | 117 |
662 | 23 | 3.96 | 118 |
613 | 887 | 3.96 | 119 |
431 | 2,607 | 3.96 | 120 |
214 | 575 | 3.98 | 121 |
635 | 47 | 3.98 | 122 |
142 | 383 | 3.99 | 123 |
242 | 57 | 4.01 | 124 |
542 | 26 | 4.03 | 125 |
442 | 163 | 4.05 | 126 |
566 | 30 | 4.05 | 127 |
534 | 211 | 4.05 | 128 |
331 | 5,396 | 4.12 | 129 |
611 | 1,202 | 4.15 | 130 |
563 | 128 | 4.27 | 131 |
426 | 140 | 4.27 | 132 |
614 | 388 | 4.28 | 133 |
166 | 248 | 4.30 | 134 |
541 | 324 | 4.31 | 135 |
626 | 37 | 4.33 | 136 |
631 | 954 | 4.33 | 137 |
236 | 296 | 4.34 | 138 |
134 | 2,404 | 4.36 | 139 |
216 | 392 | 4.37 | 140 |
653 | 63 | 4.37 | 141 |
445 | 103 | 4.39 | 142 |
466 | 88 | 4.42 | 143 |
326 | 269 | 4.48 | 144 |
545 | 20 | 4.48 | 145 |
162 | 197 | 4.49 | 146 |
141 | 3,052 | 4.50 | 147 |
256 | 31 | 4.57 | 148 |
334 | 1,808 | 4.59 | 149 |
116 | 1,697 | 4.61 | 150 |
642 | 59 | 4.61 | 151 |
263 | 206 | 4.62 | 152 |
651 | 85 | 4.62 | 153 |
416 | 698 | 4.64 | 154 |
556 | 14 | 4.65 | 155 |
516 | 188 | 4.66 | 156 |
345 | 195 | 4.66 | 157 |
434 | 835 | 4.69 | 158 |
234 | 435 | 4.69 | 159 |
342 | 324 | 4.69 | 160 |
241 | 613 | 4.71 | 161 |
624 | 69 | 4.72 | 162 |
616 | 213 | 4.72 | 163 |
543 | 246 | 4.76 | 164 |
163 | 1,060 | 4.76 | 165 |
436 | 534 | 4.77 | 166 |
462 | 83 | 4.79 | 167 |
441 | 1,221 | 4.83 | 168 |
156 | 153 | 4.83 | 169 |
264 | 87 | 4.91 | 170 |
356 | 130 | 4.92 | 171 |
663 | 132 | 4.93 | 172 |
143 | 2,267 | 4.94 | 173 |
362 | 165 | 4.96 | 174 |
536 | 140 | 4.96 | 175 |
136 | 1,442 | 5.01 | 176 |
636 | 167 | 5.09 | 177 |
463 | 396 | 5.09 | 178 |
316 | 1,399 | 5.09 | 179 |
443 | 884 | 5.13 | 180 |
341 | 2,557 | 5.14 | 181 |
526 | 32 | 5.19 | 182 |
641 | 426 | 5.20 | 183 |
161 | 1,459 | 5.20 | 184 |
366 | 173 | 5.21 | 185 |
654 | 35 | 5.24 | 186 |
661 | 168 | 5.29 | 187 |
643 | 307 | 5.30 | 188 |
634 | 314 | 5.38 | 189 |
164 | 467 | 5.40 | 190 |
343 | 1,765 | 5.48 | 191 |
561 | 162 | 5.50 | 192 |
363 | 805 | 5.52 | 193 |
261 | 270 | 5.59 | 194 |
243 | 440 | 5.62 | 195 |
461 | 560 | 5.65 | 196 |
336 | 1,060 | 5.67 | 197 |
546 | 70 | 5.77 | 198 |
244 | 245 | 5.80 | 199 |
446 | 249 | 5.92 | 200 |
144 | 1,146 | 5.93 | 201 |
564 | 49 | 5.96 | 202 |
656 | 20 | 5.98 | 203 |
146 | 613 | 5.99 | 204 |
444 | 430 | 6.01 | 205 |
646 | 77 | 6.02 | 206 |
361 | 1,219 | 6.12 | 207 |
464 | 161 | 6.15 | 208 |
364 | 373 | 6.23 | 209 |
344 | 943 | 6.45 | 210 |
666 | 23 | 6.52 | 211 |
346 | 456 | 6.61 | 212 |
544 | 122 | 6.92 | 213 |
644 | 158 | 6.96 | 214 |
246 | 140 | 7.00 | 215 |
664 | 53 | 7.15 | 216 |
Appendix B: Groups of individual domain SLDs by word type
a. Top four groups by (lowest) mean phonotactic violation score (shown in brackets in each case)
Word type 225 (total count, N = 15, mean phonotactic violation score, P̅ = 0.41):
- memyl (0.00)
- munyl (1.63)
- nemul (0.00)
- nenyl (0.00)
- nimyl (1.05)
- nomyl (1.05)
- nonel (0.41)
- nunyl (0.93)
- nymal (1.05)
- nymel (0.00)
- nymul (0.00)
- nymyl (0.00)
- nynil (0.00)
- nynul (0.00)
- nynyl (0.00)
Word type 525 (N = 4, P̅ = 0.50):
- lemyl (0.00)
- limyl (1.05)
- lunyl (0.93)
- lynul (0.00)
Word type 555 (N = 4, P̅ = 0.75):
- lalyl (0.90)
- lelyl (0.00)
- lylel (1.05)
- lylul (1.05)
Word type 125 (N = 84, P̅ = 0.82):
- banyl (0.12)
- bemyl (0.12)
- bimyl (1.17)
- bomyl (0.52)
- bumyl (1.05)
- bymyl (1.17)
- bynyl (1.17)
- cemyl (0.00)
- cenyl (0.00)
- cimul (1.58)
- cimyl (0.00)
- cinul (0.00)
- cunyl (1.63)
- cynul (0.00)
- cynyl (0.00)
- dimyl (0.00)
- dumyl (0.93)
- dunyl (0.93)
- dymul (0.00)
- dymyl (0.00)
- dynul (0.00)
- gamyl (0.70)
- ganyl (0.70)
- gimyl (0.70)
- gonyl (1.75)
- gumyl (1.64)
- gunyl (1.64)
- gymol (7.62)
- gynil (0.79)
- gynul (0.79)
- gynyl (0.79)
- kumyl (0.93)
- kunyl (0.93)
- kymul (0.58)
- kynal (1.05)
- kynul (0.00)
- kynyl (0.00)
- pemyl (0.00)
- pimyl (0.00)
- pumyl (1.63)
- punul (1.63)
- punyl (1.63)
- pymal (1.05)
- pymul (0.00)
- pymyl (1.05)
- pynul (0.00)
- pynyl (0.00)
- qamyl (0.00)
- qanul (0.00)
- qanyl (0.58)
- qemil (0.00)
- qemyl (0.00)
- qenal (2.10)
- qenil (2.10)
- qenul (0.00)
- qenyl (0.00)
- qimul (0.58)
- qimyl (0.00)
- qinel (0.00)
- qinul (0.00)
- qomil (0.41)
- qomyl (0.41)
- qonol (6.25)
- qonul (1.38)
- qonyl (1.05)
- qumyl (1.91)
- qunyl (1.91)
- qymal (4.33)
- qymil (0.97)
- qymol (0.00)
- qymul (1.63)
- qynal (1.05)
- qynel (0.00)
- qynil (0.00)
- qynol (0.00)
- qynul (0.00)
- qynyl (0.00)
- temyl (0.00)
- tumyl (0.93)
- tunyl (0.93)
- tymul (0.00)
- tynil (1.05)
- tynul (0.00)
- tynyl (1.05)
b. Bottom group by (highest) mean phonotactic violation score (shown in brackets in each case)
Word type 664 (N = 53, P̅ = 7.15):
- jajew (8.94)
- jajiw (8.94)
- jajiy (3.53)
- jajur (7.28)
- jajuy (6.72)
- jajyr (3.76)
- jajyw (7.11)
- jejaw (8.94)
- jejir (2.71)
- jejiw (8.94)
- jejiy (2.48)
- jejow (8.94)
- jejuw (8.94)
- jejyr (2.97)
- jejyw (-)
- jejyy (2.48)
- jijaw (16.25)
- jijey (2.48)
- jijiw (10.46)
- jijuy (3.53)
- jijyr (5.05)
- jijyw (10.46)
- jijyy (2.48)
- jojaw (9.01)
- jojew (9.99)
- jojey (7.70)
- jojir (12.79)
- jojiw (7.11)
- jojiy (7.70)
- jojuw (9.99)
- jojyr (6.92)
- jojyw (7.11)
- jujaw (9.99)
- jujir (3.76)
- jujiy (3.53)
- jujow (4.54)
- jujyr (3.76)
- jujyw (7.11)
- jujyy (3.53)
- jyjar (5.84)
- jyjaw (17.62)
- jyjay (6.50)
- jyjer (5.05)
- jyjey (5.61)
- jyjir (5.05)
- jyjiw (22.87)
- jyjiy (5.61)
- jyjor (5.84)
- jyjow (9.50)
- jyjur (5.84)
- jyjuw (12.07)
- jyjuy (8.80)
- jyjyy (5.61)
Appendix C: Set of popular CVCVC (SLD) names listed on the Atom.com marketplace (in order of listing on the site)
SLD name |
Word type |
Phonotactic violation score |
---|---|---|
wozot | 431 | 6.66 |
vupor | 314 | - |
vumol | 325 | 5.72 |
buvit | 131 | 1.55 |
ruvor | 434 | 2.68 |
buvic | 131 | 2.24 |
qoryx | 143 | 1.05 |
lokem | 512 | 1.05 |
wixoz | 433 | 0.97 |
nuwix | 243 | 8.48 |
modoq | 211 | 8.49 |
casux | 133 | 0.00 |
nenen | 222 | 0.00 |
zivay | 334 | - |
ryzix | 433 | 0.99 |
sazol | 335 | 1.40 |
hoxal | 335 | 0.96 |
rusax | 433 | - |
kutey | 114 | 2.53 |
vyval | 335 | 2.05 |
wodaz | 413 | 3.35 |
veqan | 312 | 1.55 |
vuvur | 334 | 3.18 |
risox | 433 | - |
zuzaz | 333 | - |
fudox | 313 | 5.06 |
qafus | 133 | 3.57 |
vozom | 332 | 2.54 |
wunax | 423 | - |
voyiv | 343 | 10.46 |
noyox | 243 | - |
roloz | 453 | 8.22 |
hypiq | 311 | 3.76 |
bijil | 165 | 19.24 |
wixah | 433 | 0.97 |
rivun | 432 | 0.50 |
vymec | 321 | 5.19 |
qovox | 133 | 3.70 |
zazoc | 331 | - |
zovun | 332 | 2.54 |
zifil | 335 | 1.36 |
povor | 134 | 2.68 |
jabus | 613 | 0.90 |
kuboc | 111 | - |
vavur | 334 | 2.13 |
jovur | 634 | 3.26 |
fivox | 333 | - |
pexet | 131 | 0.00 |
vitym | 312 | 5.65 |
jovyx | 633 | 2.33 |
jopex | 613 | 5.48 |
rydat | 411 | 1.05 |
juxan | 632 | 1.72 |
ryzel | 435 | 2.04 |
kaxil | 135 | 0.00 |
tevam | 132 | - |
magik | 211 | 0.79 |
suruk | 341 | 2.73 |
kutox | 113 | 4.69 |
pivoy | 134 | - |
zonoh | 323 | 1.40 |
ruxic | 431 | 0.93 |
joxar | 634 | - |
ryzid | 431 | 1.48 |
tuzic | 131 | 2.04 |
puroq | 141 | 6.01 |
favun | 332 | 4.07 |
meyex | 243 | 7.24 |
wyzal | 435 | 2.54 |
vytul | 315 | 1.55 |
huvah | 333 | 1.99 |
humux | 323 | 2.65 |
xaxas | 333 | 0.99 |
kozil | 135 | 2.04 |
xejus | 363 | 2.62 |
xaxor | 334 | 2.12 |
yiket | 411 | 5.27 |
ryzil | 435 | 0.99 |
pimox | 123 | - |
vozaz | 333 | 3.87 |
yaxum | 432 | 0.58 |
hejix | 363 | 1.35 |
zodem | 312 | 2.04 |
dymox | 123 | 4.69 |
povoy | 134 | 6.24 |
ruxol | 435 | - |
rykis | 413 | 1.05 |
rynam | 422 | 1.05 |
pivay | 134 | 3.70 |
zybil | 315 | 2.16 |
buvas | 133 | 3.57 |
nohok | 231 | 5.25 |
vuxel | 335 | 1.43 |
jexas | 633 | 0.79 |
zozic | 331 | 7.53 |
yizic | 431 | 2.62 |
vuxan | 332 | 1.43 |
vybis | 313 | 1.66 |
buxas | 133 | 1.05 |
muvax | 233 | - |
hoyox | 343 | 11.40 |
jojur | 664 | 7.93 |
vuzal | 335 | 2.54 |
vuxar | 334 | 2.56 |
nefik | 231 | 0.37 |
nysor | 234 | 2.18 |
zixar | 334 | 2.12 |
cykal | 115 | 1.05 |
yidox | 413 | - |
dosox | 133 | - |
wixas | 433 | 0.97 |
vucin | 312 | 1.55 |
zuvay | 334 | - |
vacax | 313 | 5.19 |
sevoz | 333 | 0.50 |
moyox | 243 | 5.00 |
fosyl | 335 | 1.42 |
bomor | 124 | - |
yador | 414 | 2.76 |
pevox | 133 | - |
jixol | 635 | 0.79 |
jojex | 663 | - |
zavem | 332 | 18.44 |
vuxic | 331 | 1.43 |
nyzon | 232 | 0.99 |
koxol | 135 | 3.11 |
nidom | 212 | 0.00 |
vupax | 313 | 5.19 |
vudit | 311 | 1.55 |
fisil | 335 | 0.37 |
zuzur | 334 | 4.17 |
vijix | 363 | 1.29 |
vevev | 333 | 1.00 |
vudom | 312 | 5.72 |
vybix | 313 | 1.66 |
kykys | 113 | 4.16 |
hoxor | 334 | 2.09 |
vopom | 312 | 1.55 |
vamoy | 324 | 1.40 |
wimox | 423 | - |
zovoy | 334 | 7.23 |
juwab | 641 | 5.49 |
nyzol | 235 | 7.82 |
yaxam | 432 | 0.58 |
kadoy | 114 | - |
vusim | 332 | 6.72 |
wizun | 432 | 1.96 |
huxic | 331 | 2.48 |
vybem | 312 | 20.00 |
zuzat | 331 | - |
duzar | 134 | 3.17 |
vayox | 343 | 7.73 |
hydux | 313 | 1.61 |
vudix | 313 | 1.55 |
gozok | 131 | - |
pelas | 153 | 0.00 |
yaxoy | 434 | 3.28 |
wydus | 413 | 0.97 |
zozet | 331 | 3.03 |
temux | 123 | 0.00 |
tyvix | 133 | 1.55 |
zybal | 315 | 2.16 |
fovay | 334 | - |
vutay | 314 | - |
qorik | 141 | 5.00 |
vubos | 313 | 13.01 |
xeror | 344 | - |
vybon | 312 | 5.31 |
xudor | 314 | 3.17 |
fudax | 313 | 11.83 |
zuxum | 332 | 1.93 |
wyzox | 433 | - |
yaxer | 434 | 1.71 |
cuvax | 133 | - |
vozay | 334 | 3.44 |
cuzoc | 131 | - |
zoxum | 332 | 1.40 |
vabax | 313 | 5.31 |
zixam | 332 | 0.99 |
fofal | 335 | 11.62 |
fivoy | 334 | 1.77 |
buvax | 133 | - |
xumox | 323 | 5.69 |
vudas | 313 | 2.88 |
modos | 213 | 8.22 |
vofic | 331 | 1.27 |
vutol | 315 | 5.19 |
joxol | 635 | 7.03 |
yutox | 413 | 5.27 |
vyxon | 332 | 2.52 |
vevup | 331 | 2.26 |
zodum | 312 | 2.04 |
wevum | 432 | 1.47 |
jucid | 611 | 2.33 |
dydox | 113 | 5.78 |
pumol | 125 | 1.05 |
fuvun | 332 | 1.92 |
muvay | 234 | 3.02 |
vudic | 311 | 1.55 |
poyax | 143 | - |
noler | 254 | 2.18 |
zynol | 325 | 2.04 |
vufic | 331 | 6.10 |
zixol | 335 | 0.99 |
viviy | 334 | 1.90 |
koxas | 133 | 0.41 |
vobac | 311 | 1.66 |
vudec | 311 | 5.72 |
tayox | 143 | 7.24 |
zilyx | 353 | 0.99 |
luyul | 545 | 2.92 |
vaved | 331 | 9.38 |
vupel | 315 | 1.55 |
vypax | 313 | 5.19 |
vudax | 313 | 27.16 |
royaz | 443 | 6.33 |
duryx | 143 | 2.73 |
vudol | 315 | 1.55 |
vapux | 313 | 0.50 |
zinoc | 321 | 5.69 |
zovyk | 331 | 2.54 |
voyiz | 343 | 9.86 |
fetiz | 313 | 0.37 |
qerol | 145 | 0.00 |
koxil | 135 | 0.41 |
lovyz | 533 | 2.88 |
loyix | 543 | 5.00 |
bybix | 113 | 1.28 |
bofed | 131 | 6.33 |
vurin | 342 | 3.23 |
vazen | 332 | 2.54 |
hyqor | 314 | 5.25 |
wyzow | 434 | 4.69 |
totix | 113 | 1.05 |
doxay | 134 | - |
lixyl | 535 | 0.00 |
ryzim | 432 | 0.99 |
watif | 413 | 3.43 |
tevav | 133 | - |
xevix | 333 | 1.49 |
qidix | 113 | 0.00 |
vuvec | 331 | - |
nipod | 211 | 0.49 |
zayax | 343 | 3.91 |
lavun | 532 | 3.70 |
qonor | 124 | 1.54 |
pozen | 132 | 2.04 |
sosel | 335 | 1.05 |
vazyl | 335 | 2.54 |
wilic | 451 | 2.02 |
balac | 151 | 0.52 |
coboh | 113 | 3.87 |
nomel | 225 | 1.05 |
kejat | 161 | 2.89 |
sohor | 334 | 7.23 |
guvit | 131 | 2.14 |
muzuh | 233 | 5.23 |
juvyc | 631 | 2.33 |
vavov | 333 | 2.08 |
zojal | 365 | 2.83 |
quliv | 153 | 4.25 |
hixir | 334 | 1.69 |
wepuf | 413 | 3.03 |
nuvux | 233 | 1.55 |
zidux | 313 | 0.99 |
zylon | 352 | 2.04 |
sesef | 333 | 2.06 |
zupak | 311 | 2.04 |
noboh | 213 | 3.87 |
voras | 343 | 1.55 |
femez | 323 | - |
sinez | 323 | - |
zulec | 351 | 2.04 |
fevum | 332 | 1.92 |
vodiq | 311 | 1.55 |
widoz | 413 | 8.14 |
mytes | 213 | 3.90 |
yariq | 441 | 0.58 |
tupux | 113 | 10.48 |
lyzic | 531 | 2.04 |
mogux | 213 | 1.75 |
juvyn | 632 | 2.22 |
kisiv | 133 | 1.08 |
wiqet | 411 | 0.97 |
qovax | 133 | 5.19 |
wipux | 413 | 0.97 |
zojon | 362 | 6.47 |
jurux | 643 | 9.84 |
xalix | 353 | 0.99 |
hygic | 311 | 2.40 |
hilis | 353 | 0.56 |
sazay | 334 | - |
zotey | 314 | 2.94 |
toruq | 141 | 1.05 |
vudem | 312 | 1.55 |
vysal | 335 | 1.55 |
pypic | 111 | 1.05 |
qical | 115 | 1.05 |
cuvux | 133 | 14.73 |
wavat | 431 | 1.88 |
deqox | 113 | 5.96 |
vefut | 331 | 0.87 |
zoyac | 341 | 6.00 |
vusar | 334 | 2.68 |
pacol | 115 | 1.05 |
lyxar | 534 | 1.13 |
ciniv | 123 | 1.08 |
kivoc | 131 | 0.50 |
wisox | 433 | - |
gavum | 132 | 1.20 |
vubux | 313 | 5.84 |
fivay | 334 | 6.61 |
zazay | 334 | - |
tucus | 113 | 1.05 |
vopax | 313 | 5.19 |
miqos | 213 | 6.89 |
tixot | 131 | 0.00 |
qobon | 112 | 3.32 |
voyab | 341 | 7.28 |
zeyox | 343 | 8.23 |
zizot | 331 | 1.98 |
fexen | 332 | 0.37 |
nuvam | 232 | - |
zatam | 312 | 2.04 |
zizet | 331 | 3.91 |
dixel | 135 | 0.00 |
cabaz | 113 | - |
zanic | 321 | 0.99 |
begax | 113 | - |
nibax | 213 | 4.81 |
vufex | 333 | 5.56 |
qasus | 133 | 1.05 |
ruvam | 432 | - |
budax | 113 | 11.67 |
jurer | 644 | 4.65 |
vezil | 335 | 1.49 |
fuqet | 311 | 5.71 |
qovas | 133 | 1.55 |
zaroc | 341 | - |
fikay | 314 | 6.11 |
wajex | 463 | 6.45 |
cuned | 121 | 2.11 |
menos | 223 | 8.22 |
dogoz | 113 | 8.28 |
dezox | 133 | - |
nozov | 233 | - |
pizah | 133 | 2.04 |
tuyul | 145 | 5.00 |
pikav | 113 | - |
duxul | 135 | 0.93 |
vuxos | 333 | 7.27 |
wuxer | 434 | 3.04 |
teqer | 114 | 2.18 |
neloz | 253 | 0.00 |
givoc | 131 | 1.20 |
bexat | 131 | - |
nesux | 233 | 0.00 |
vuvul | 335 | 2.05 |
nyvix | 233 | 1.55 |
povem | 132 | - |
hejex | 363 | 1.35 |
jemox | 623 | 6.56 |
vovav | 333 | - |
moxur | 234 | 1.54 |
hoxed | 331 | 1.78 |
qanor | 124 | 1.13 |
vudur | 314 | 2.68 |
movym | 232 | 11.57 |
vojov | 363 | 2.05 |
jymex | 623 | 6.56 |
qalon | 152 | 2.56 |
lydax | 513 | 4.69 |
bewat | 141 | 5.47 |
cesot | 131 | - |
zunek | 321 | 2.04 |
huxey | 334 | 5.03 |
yerey | 444 | 1.48 |
hozet | 331 | 2.60 |
kavux | 133 | 5.38 |
cozok | 131 | 5.69 |
fumoc | 321 | 5.64 |
vypon | 312 | 1.55 |
tycer | 114 | 2.18 |
zuvil | 335 | 2.54 |
ryzus | 433 | 0.99 |
bivoz | 133 | 7.78 |
hosox | 333 | - |
qyler | 154 | 2.18 |
jeloc | 651 | 0.79 |
fasyt | 331 | 1.42 |
References
[2] https://circleid.com/posts/availability-analysis-of-brandable-variant-string-domain-names
[3] https://home.cc.umanitoba.ca/~krussll/phonetics/articulation/describing-consonants.html
[4] https://www.dyslexia-reading-well.com/44-phonemes-in-english.html
[5] https://www.atom.com/premium-domains-for-sale/all/length/5%20Letters
This article was first published on 8 January 2025 at:
https://circleid.com/posts/unregistered-gems-part-5-using-groupings-to-find-brandable-domains
No comments:
Post a Comment