Thursday, 9 January 2025

Unregistered Gems Part 5: Using groupings to find brandable domains

Introduction

The initial instalment of my recent series of articles on domain name discovery[1] considered the use of phonotactic analysis - that is, the measure of the similarity of a string to the 'corpus' of other words in a language - to identify available unregistered candidate domains which may be of interest for potential brandability. This filtering process is necessary because of the large universe of domains which must be assessed. Considering just 5-character alphabetics .com domains, for example, there are approximately 9 million unregistered combinations of characters (as the SLD, or second-level domain name - i.e. the part to the left of the dot), out of the 'pool' of around 12 million possible names (from aaaaa.com to zzzzz.com).

Phonotactic analysis is a powerful tool, but does have some shortcomings - not least, it is computationally slow to calculate the phonotactic 'violation score' for a string of characters, but additionally it typically still retains large numbers of candidate domains within any given score window, and furthermore the 'mapping' of score to brandable desirability is not always 'clean' (i.e. many domains which are (subjectively) attractive do not always generate low violation scores).

In this follow-up, I start to explore additional frameworks for filtering the large sets of candidate domain names, considering the inherent structure of the SLD strings themselves. This type of approach would allow would-be brand owners to specify a preference as to the 'type' of brand name they may be looking to use, based on analogy with other brand names, words or strings (and potentially also allows for further filtering based on factors such as preferred initial letters, etc.), but without having to specify a specific exact string or keyword which they would like the brand name to resemble (as in the methodology proposed for 'variant string' domain names in another recent study[2]).

Framework

As was also the case for the phonotactic method, the framework considered in this initial study relates to classification of domain names according to their high-level phonetic characteristics, but using a much simplified approach (and with negligible computational overhead to calculate) in which the constituent characters (consonants / vowels) are categorised into groups.

The groupings are based on the standard classifications for (English) consonant phonemes (i.e. unique sounds), in which they are classified according to the positions (in the vocal tract) and manners of articulation, within speech[3,4].

For simplicity, I consider one of the original datasets utilised in the initial study - that is, the set of (as of the time of original analysis) unregistered, 5-character .com domain names with SLDs of the form CVCVC (C = consonant, V = vowel, noting that a 'y' is also accepted where it appears in a 'vowel' position). In general, there is no one-to-one mapping between individual characters and phonemes, due to factors such as variabilities in pronunciation and the existence of character combinations (especially phonemes such as 'ch', 'sh', 'ng', etc.). However, the use of the CVCVC pattern means that a 'cleaner' mapping can be assigned (since, for example, no consonant pairs will arise) and the utilised groupings are shown in Table 1. The overall classification of any given SLD string is then based just on the consonants present within the string (which are deemed to determine the high-level 'structure' of the word).

Top-level group
                                             
Group
                                
Type
                                                    
Consonants
                                
  1 (plosive) 1A   Bilabial plosive   b, p
  1 (plosive) 1B   Alveolar plosive   d, t
  1 (plosive) 1C   Velar plosive   c, g, k, q
  2 (nasal) 2A   Bilabial nasal   m
  2 (nasal) 2B   Alveolar nasal   n
  3 (fricative) 3A   Labiodental fricative   f, v
  3 (fricative) 3B   Alveolar fricative   s, x, z
  3 (fricative) 3C   Glottal fricative   h
  4 (approximant) 4A   Labial-velar approximant   w
  4 (approximant) 4B   Retroflex approximant   r
  4 (approximant) 4C   Palatal approximant   y
  5 (lateral approximant) 5A   Alveolar lateral approximant   l
  6 (affricate) 6A   Postalveolar affricate   j

Table 1: Groupings assigned to individual consonants as used in the analysis

In order to give a less granular framework, and cluster together words comprising (at a higher level) similar 'types' of sounds, the phoneme groups are combined into 'top-level groups' based on their manners of articulation (plosive, nasal, etc.), as shown in Table 1.

This methodology means that all CVCVC strings can be defined according to the top-level groups of their three consonants (i.e. characters 1, 3 and 5) and thereby expressed as a three-digit 'code' (the 'word type'). For example, the brand 'rolex' would be assigned word type 435 (since 'r' appears in consonant group 4, 'l' in group 5, and 'x' in group 3). In total, therefore, there are 216 (i.e. 6 × 6 × 6) distinct possible word types (from 111 to 666).

Analysis

Utilising the above framework, the 137,648 unregistered CVCVC .com domain names from the original study can be categorised into these 216 groups, based on their SLDs. As an initial round of analysis, it is informative to assess whether the domains assigned to each of the specific 216 word types tend (on average) to be associated with lower or higher phonotactic violation scores (as per the original study) - i.e. whether they comprise more or less 'credible' candidate words / brand names. This analysis is shown in Appendix A.

The data can also be visualised by plotting the spread of phonotactic violation scores of the domains within each group (Figure 1, in which the word types are sorted into their ranking order (Appendix A) from lowest ('best') to highest ('worst') mean phonotactic violation score - e.g. rank 1 = word type 225, etc).

Figure 1: Spread of phonotactic violation scores of the domains within each word-type group (sorted from lowest to highest mean phonotactic violation score (shown in red))

Examples of the individual domain SLDs (i.e. candidate brandable names) within each of the top four (i.e. lowest mean phonotactic violation score) groups are listed below for illustration (with their phonotactic scores shown in brackets in each case) (full lists shown in Appendix B).

  • Word type 225 - memyl (0.00), munyl (1.63), nemul (0.00), nenyl (0.00)
  • Word type 525 - lemyl (0.00), limyl (1.05), lunyl (0.93), lynul (0.00)
  • Word type 555 - lalyl (0.90), lelyl (0.00), lylel (1.05), lylul (1.05)
  • Word type 125 - banyl (0.12), cemyl (0.00), dimyl (0.00), gamyl (0.70)

Whilst in these specific cases, the actual strings may not, in general, be enormously compelling as brandable examples, the approach does broadly seem to behave in the intended way (i.e. in allowing the extraction of groups of 'similar' names to be reviewed in bulk, without relying on phonotactic score, whose behaviour is perhaps less predictable); the key 'art' to this approach might be in determining which word types tend to make the 'best' brandable candidates (and this may not necessarily always be those with the lowest phonotactic scores).

For comparison, examples of the names in the highest scored ('worst') group are shown below (full list shown in Appendix B).

  • Word type 664 - jajew (8.94), jejir (2.71), jojey (7.70), jyjar (5.84)

How do these groupings 'map' to those sets of names independently considered to be credible examples for brandability? One approach to answering this question involves looking at the domains offered for sale on brandable name marketplaces, on which the names have already been reviewed for suitability and deemed credible. In this case, I consider the top 2,000 5-character (SLD) names offered for sale on the domain marketplace Atom.com[5] (filtering the results by requesting the inclusion only of 'made-up' names (since dictionary terms will presumably automatically be deemed more attractive, regardless of their phonetic characteristics), names up to two syllables, and sorting the results by the 'most popular' - though in this case, additional factors, such as domain asking-price, may become a factor).

Of these 2,000 names, 390 match the CVCVC pattern considered in this study. Table 2 shows the top ten word types represented within this dataset. Note that these most popular brand name word types are not, in general, those which were found to be most highly ranked (according to their mean phonotactic score) in the previous analysis.

Word type
                                
No. domains
                                
Word type ranking
in phonotactic study
(/ 216)
                                
133 21 91
334 21 149
313 18 100
331 18 129
335 16 82
113 15 89
332 14 79
333 14 103
131 14 101
312 12 40

Table 2: Top ten word types represented in the dataset of most popular CVCVC names on the Atom.com domain marketplace

Again for illustration, the SLDs of the 21 domains assigned to the most common word-type group (for the set of ‘popular’ domains on Atom.com considered in this analysis) are listed below (again with their phonotactic scores shown in brackets).

Word type 133:

  • casux (0.00)
  • qafus (3.57)
  • qovox (3.70)
  • buvas (3.57)
  • buxas (1.05)
  • dosox (-)
  • pevox (-)
  • cuvax (-)
  • buvax (-)
  • koxas (0.41)
  • tevav (-)
  • kisiv (1.08)
  • qovax (5.19)
  • cuvux (14.73)
  • qasus (1.05)
  • qovas (1.55)
  • dezox (-)
  • pizah (2.04)
  • kavux (5.38)
  • bivoz (7.78)
  • tyvix (1.55)

Again, we see a lack of correlation of (just) phonotactic score with the subjective measure of desirability denoted by the inclusion of the names on the marketplace; the mean phonotactic violation score across the set of 390 CVCVC names taken from Atom.com is actually relatively high (3.36) (see Appendix C). Of course, it is a matter of opinion how 'good' these names 'actually' are, compared with any of the other candidates identified in these studies.

Discussion

What does all this tell us? One key take-away is that phonotactic scores in isolation do not provide a very good measure of the credibility of a domain name as a candidate for brandability (assuming that there is a possibility for any sort of non-subjective measure of desirability!), but that other simple groupings of names based on high-level phonetic characteristics (e.g. 'word types') of the strings in question can provide a basis for filtering candidate names for review.

The framework presented here is an extremely simplistic one, and it is likely that enhancements will be necessary in order to be able to generalise the approach at all - to take account, for example, of strings of differering lengths, alternative consonant / vowel patterns, inclusion of diphthongs or longer character combinations, or variability in the pronunciation of individual characters (such as treating the 'c' in 'ca*', 'co*' and 'cu*' (generally hard) differently from that in 'ce*' and 'ci*' (generally soft)).

Nevertheless, this type of approach does provide the potential for specifying the 'type' of word which may be of interest for a potential brand name, and using this specification as a basis for filtering the huge set of unregistered names which are to be considered. It is fair to say that we are still some way from being able to say that certain word types make 'better' brandable candidates, but it may be the case that extensive review of datasets by branding and marketing experts may help us move in this direction. If - for instance - we assume that word type 133 is a 'good' one for CVCVC names to serve as brandable candidates, based on the examples listed on the Atom.com marketplace, this would provide some basis for starting to review the huge set of unregistered .com names from the original study. There are 5,118 type-133 names in the original dataset (out of the 'pool' of over 137,000 CVCVC names), and some of these will undoubtedly be credible candidates for brandability. Exactly which ones will be a subjective matter of opinion, but examples might include names such as cisyx, civyz, cyfax, cyxix, doxiz, dyxix, gyfex, kysix, pyxox, qaxix, qizox, qyxes and toxiz.

* * * * *

Appendix A: Phonotactic analysis of the groupings of the unregistered CVCVC .com domains from the original study

Word type
                                
No. domains (N)
                                
Mean phonotactic
violation score of
domains in group
                                
Ranking
                                
225 15 0.41 1
525 4 0.50 2
555 4 0.75 3
125 84 0.82 4
222 23 0.92 5
425 39 0.98 6
512 85 0.99 7
122 175 1.14 8
215 77 1.19 9
422 73 1.27 10
625 12 1.35 11
255 12 1.36 12
155 85 1.38 13
322 125 1.39 14
252 4 1.43 15
325 47 1.44 16
622 28 1.45 17
522 14 1.51 18
115 577 1.65 19
152 49 1.66 20
212 158 1.67 21
265 15 1.76 22
315 407 1.82 23
415 226 1.92 24
352 18 1.98 25
112 1,074 2.00 26
615 84 2.00 27
235 43 2.08 28
612 161 2.09 29
355 57 2.09 30
565 14 2.12 31
412 401 2.16 32
552 5 2.18 33
221 225 2.20 34
655 13 2.21 35
551 46 2.27 36
251 85 2.28 37
455 41 2.32 38
515 41 2.33 39
312 792 2.33 40
553 28 2.37 41
532 48 2.37 42
135 427 2.38 43
151 556 2.40 44
521 130 2.41 45
121 1,245 2.54 46
153 400 2.54 47
132 752 2.55 48
452 26 2.59 49
165 129 2.65 50
513 534 2.70 51
451 257 2.71 52
453 152 2.75 53
123 955 2.78 54
351 412 2.79 55
523 80 2.82 56
254 49 2.82 57
421 532 2.83 58
432 281 2.84 59
465 55 2.89 60
511 760 2.89 61
232 93 2.94 62
223 158 2.96 63
262 26 2.99 64
621 176 3.00 65
665 15 3.03 66
154 218 3.05 67
253 62 3.11 68
213 1,122 3.14 69
632 105 3.17 70
353 284 3.19 71
365 109 3.22 72
321 992 3.22 73
535 31 3.23 74
531 592 3.24 75
435 162 3.29 76
424 192 3.29 77
423 383 3.29 78
332 565 3.30 79
323 710 3.31 80
354 182 3.32 81
335 308 3.32 82
211 1,434 3.37 83
226 70 3.40 84
554 26 3.47 85
454 91 3.47 86
456 71 3.48 87
533 445 3.51 88
113 5,988 3.51 89
562 14 3.53 90
133 5,118 3.53 91
233 853 3.55 92
145 241 3.56 93
124 518 3.58 94
623 118 3.60 95
514 279 3.60 96
413 2,376 3.62 97
652 7 3.65 98
645 32 3.66 99
313 4,733 3.69 100
131 6,740 3.69 101
111 7,833 3.73 102
333 3,805 3.76 103
433 1,872 3.81 104
245 41 3.85 105
524 50 3.85 106
411 3,225 3.87 107
114 2,832 3.87 108
224 96 3.90 109
414 1,104 3.90 110
231 1,140 3.91 111
324 409 3.92 112
266 51 3.93 113
314 2,297 3.94 114
126 332 3.94 115
633 709 3.95 116
311 6,734 3.95 117
662 23 3.96 118
613 887 3.96 119
431 2,607 3.96 120
214 575 3.98 121
635 47 3.98 122
142 383 3.99 123
242 57 4.01 124
542 26 4.03 125
442 163 4.05 126
566 30 4.05 127
534 211 4.05 128
331 5,396 4.12 129
611 1,202 4.15 130
563 128 4.27 131
426 140 4.27 132
614 388 4.28 133
166 248 4.30 134
541 324 4.31 135
626 37 4.33 136
631 954 4.33 137
236 296 4.34 138
134 2,404 4.36 139
216 392 4.37 140
653 63 4.37 141
445 103 4.39 142
466 88 4.42 143
326 269 4.48 144
545 20 4.48 145
162 197 4.49 146
141 3,052 4.50 147
256 31 4.57 148
334 1,808 4.59 149
116 1,697 4.61 150
642 59 4.61 151
263 206 4.62 152
651 85 4.62 153
416 698 4.64 154
556 14 4.65 155
516 188 4.66 156
345 195 4.66 157
434 835 4.69 158
234 435 4.69 159
342 324 4.69 160
241 613 4.71 161
624 69 4.72 162
616 213 4.72 163
543 246 4.76 164
163 1,060 4.76 165
436 534 4.77 166
462 83 4.79 167
441 1,221 4.83 168
156 153 4.83 169
264 87 4.91 170
356 130 4.92 171
663 132 4.93 172
143 2,267 4.94 173
362 165 4.96 174
536 140 4.96 175
136 1,442 5.01 176
636 167 5.09 177
463 396 5.09 178
316 1,399 5.09 179
443 884 5.13 180
341 2,557 5.14 181
526 32 5.19 182
641 426 5.20 183
161 1,459 5.20 184
366 173 5.21 185
654 35 5.24 186
661 168 5.29 187
643 307 5.30 188
634 314 5.38 189
164 467 5.40 190
343 1,765 5.48 191
561 162 5.50 192
363 805 5.52 193
261 270 5.59 194
243 440 5.62 195
461 560 5.65 196
336 1,060 5.67 197
546 70 5.77 198
244 245 5.80 199
446 249 5.92 200
144 1,146 5.93 201
564 49 5.96 202
656 20 5.98 203
146 613 5.99 204
444 430 6.01 205
646 77 6.02 206
361 1,219 6.12 207
464 161 6.15 208
364 373 6.23 209
344 943 6.45 210
666 23 6.52 211
346 456 6.61 212
544 122 6.92 213
644 158 6.96 214
246 140 7.00 215
664 53 7.15 216

Appendix B: Groups of individual domain SLDs by word type

a. Top four groups by (lowest) mean phonotactic violation score (shown in brackets in each case)

Word type 225 (total count, N = 15, mean phonotactic violation score, = 0.41):

  • memyl (0.00)
  • munyl (1.63)
  • nemul (0.00)
  • nenyl (0.00)
  • nimyl (1.05)
  • nomyl (1.05)
  • nonel (0.41)
  • nunyl (0.93)
  • nymal (1.05)
  • nymel (0.00)
  • nymul (0.00)
  • nymyl (0.00)
  • nynil (0.00)
  • nynul (0.00)
  • nynyl (0.00)

Word type 525 (N = 4, = 0.50):

  • lemyl (0.00)
  • limyl (1.05)
  • lunyl (0.93)
  • lynul (0.00)

Word type 555 (N = 4, = 0.75):

  • lalyl (0.90)
  • lelyl (0.00)
  • lylel (1.05)
  • lylul (1.05)

Word type 125 (N = 84, = 0.82):

  • banyl (0.12)
  • bemyl (0.12)
  • bimyl (1.17)
  • bomyl (0.52)
  • bumyl (1.05)
  • bymyl (1.17)
  • bynyl (1.17)
  • cemyl (0.00)
  • cenyl (0.00)
  • cimul (1.58)
  • cimyl (0.00)
  • cinul (0.00)
  • cunyl (1.63)
  • cynul (0.00)
  • cynyl (0.00)
  • dimyl (0.00)
  • dumyl (0.93)
  • dunyl (0.93)
  • dymul (0.00)
  • dymyl (0.00)
  • dynul (0.00)
  • gamyl (0.70)
  • ganyl (0.70)
  • gimyl (0.70)
  • gonyl (1.75)
  • gumyl (1.64)
  • gunyl (1.64)
  • gymol (7.62)
  • gynil (0.79)
  • gynul (0.79)
  • gynyl (0.79)
  • kumyl (0.93)
  • kunyl (0.93)
  • kymul (0.58)
  • kynal (1.05)
  • kynul (0.00)
  • kynyl (0.00)
  • pemyl (0.00)
  • pimyl (0.00)
  • pumyl (1.63)
  • punul (1.63)
  • punyl (1.63)
  • pymal (1.05)
  • pymul (0.00)
  • pymyl (1.05)
  • pynul (0.00)
  • pynyl (0.00)
  • qamyl (0.00)
  • qanul (0.00)
  • qanyl (0.58)
  • qemil (0.00)
  • qemyl (0.00)
  • qenal (2.10)
  • qenil (2.10)
  • qenul (0.00)
  • qenyl (0.00)
  • qimul (0.58)
  • qimyl (0.00)
  • qinel (0.00)
  • qinul (0.00)
  • qomil (0.41)
  • qomyl (0.41)
  • qonol (6.25)
  • qonul (1.38)
  • qonyl (1.05)
  • qumyl (1.91)
  • qunyl (1.91)
  • qymal (4.33)
  • qymil (0.97)
  • qymol (0.00)
  • qymul (1.63)
  • qynal (1.05)
  • qynel (0.00)
  • qynil (0.00)
  • qynol (0.00)
  • qynul (0.00)
  • qynyl (0.00)
  • temyl (0.00)
  • tumyl (0.93)
  • tunyl (0.93)
  • tymul (0.00)
  • tynil (1.05)
  • tynul (0.00)
  • tynyl (1.05)

b. Bottom group by (highest) mean phonotactic violation score (shown in brackets in each case)

Word type 664 (N = 53, = 7.15):

  • jajew (8.94)
  • jajiw (8.94)
  • jajiy (3.53)
  • jajur (7.28)
  • jajuy (6.72)
  • jajyr (3.76)
  • jajyw (7.11)
  • jejaw (8.94)
  • jejir (2.71)
  • jejiw (8.94)
  • jejiy (2.48)
  • jejow (8.94)
  • jejuw (8.94)
  • jejyr (2.97)
  • jejyw (-)
  • jejyy (2.48)
  • jijaw (16.25)
  • jijey (2.48)
  • jijiw (10.46)
  • jijuy (3.53)
  • jijyr (5.05)
  • jijyw (10.46)
  • jijyy (2.48)
  • jojaw (9.01)
  • jojew (9.99)
  • jojey (7.70)
  • jojir (12.79)
  • jojiw (7.11)
  • jojiy (7.70)
  • jojuw (9.99)
  • jojyr (6.92)
  • jojyw (7.11)
  • jujaw (9.99)
  • jujir (3.76)
  • jujiy (3.53)
  • jujow (4.54)
  • jujyr (3.76)
  • jujyw (7.11)
  • jujyy (3.53)
  • jyjar (5.84)
  • jyjaw (17.62)
  • jyjay (6.50)
  • jyjer (5.05)
  • jyjey (5.61)
  • jyjir (5.05)
  • jyjiw (22.87)
  • jyjiy (5.61)
  • jyjor (5.84)
  • jyjow (9.50)
  • jyjur (5.84)
  • jyjuw (12.07)
  • jyjuy (8.80)
  • jyjyy (5.61)

Appendix C: Set of popular CVCVC (SLD) names listed on the Atom.com marketplace (in order of listing on the site)

SLD name
                                
Word type
                                
Phonotactic
violation score
                                
  wozot 431 6.66
  vupor 314 -
  vumol 325 5.72
  buvit 131 1.55
  ruvor 434 2.68
  buvic 131 2.24
  qoryx 143 1.05
  lokem 512 1.05
  wixoz 433 0.97
  nuwix 243 8.48
  modoq 211 8.49
  casux 133 0.00
  nenen 222 0.00
  zivay 334 -
  ryzix 433 0.99
  sazol 335 1.40
  hoxal 335 0.96
  rusax 433 -
  kutey 114 2.53
  vyval 335 2.05
  wodaz 413 3.35
  veqan 312 1.55
  vuvur 334 3.18
  risox 433 -
  zuzaz 333 -
  fudox 313 5.06
  qafus 133 3.57
  vozom 332 2.54
  wunax 423 -
  voyiv 343 10.46
  noyox 243 -
  roloz 453 8.22
  hypiq 311 3.76
  bijil 165 19.24
  wixah 433 0.97
  rivun 432 0.50
  vymec 321 5.19
  qovox 133 3.70
  zazoc 331 -
  zovun 332 2.54
  zifil 335 1.36
  povor 134 2.68
  jabus 613 0.90
  kuboc 111 -
  vavur 334 2.13
  jovur 634 3.26
  fivox 333 -
  pexet 131 0.00
  vitym 312 5.65
  jovyx 633 2.33
  jopex 613 5.48
  rydat 411 1.05
  juxan 632 1.72
  ryzel 435 2.04
  kaxil 135 0.00
  tevam 132 -
  magik 211 0.79
  suruk 341 2.73
  kutox 113 4.69
  pivoy 134 -
  zonoh 323 1.40
  ruxic 431 0.93
  joxar 634 -
  ryzid 431 1.48
  tuzic 131 2.04
  puroq 141 6.01
  favun 332 4.07
  meyex 243 7.24
  wyzal 435 2.54
  vytul 315 1.55
  huvah 333 1.99
  humux 323 2.65
  xaxas 333 0.99
  kozil 135 2.04
  xejus 363 2.62
  xaxor 334 2.12
  yiket 411 5.27
  ryzil 435 0.99
  pimox 123 -
  vozaz 333 3.87
  yaxum 432 0.58
  hejix 363 1.35
  zodem 312 2.04
  dymox 123 4.69
  povoy 134 6.24
  ruxol 435 -
  rykis 413 1.05
  rynam 422 1.05
  pivay 134 3.70
  zybil 315 2.16
  buvas 133 3.57
  nohok 231 5.25
  vuxel 335 1.43
  jexas 633 0.79
  zozic 331 7.53
  yizic 431 2.62
  vuxan 332 1.43
  vybis 313 1.66
  buxas 133 1.05
  muvax 233 -
  hoyox 343 11.40
  jojur 664 7.93
  vuzal 335 2.54
  vuxar 334 2.56
  nefik 231 0.37
  nysor 234 2.18
  zixar 334 2.12
  cykal 115 1.05
  yidox 413 -
  dosox 133 -
  wixas 433 0.97
  vucin 312 1.55
  zuvay 334 -
  vacax 313 5.19
  sevoz 333 0.50
  moyox 243 5.00
  fosyl 335 1.42
  bomor 124 -
  yador 414 2.76
  pevox 133 -
  jixol 635 0.79
  jojex 663 -
  zavem 332 18.44
  vuxic 331 1.43
  nyzon 232 0.99
  koxol 135 3.11
  nidom 212 0.00
  vupax 313 5.19
  vudit 311 1.55
  fisil 335 0.37
  zuzur 334 4.17
  vijix 363 1.29
  vevev 333 1.00
  vudom 312 5.72
  vybix 313 1.66
  kykys 113 4.16
  hoxor 334 2.09
  vopom 312 1.55
  vamoy 324 1.40
  wimox 423 -
  zovoy 334 7.23
  juwab 641 5.49
  nyzol 235 7.82
  yaxam 432 0.58
  kadoy 114 -
  vusim 332 6.72
  wizun 432 1.96
  huxic 331 2.48
  vybem 312 20.00
  zuzat 331 -
  duzar 134 3.17
  vayox 343 7.73
  hydux 313 1.61
  vudix 313 1.55
  gozok 131 -
  pelas 153 0.00
  yaxoy 434 3.28
  wydus 413 0.97
  zozet 331 3.03
  temux 123 0.00
  tyvix 133 1.55
  zybal 315 2.16
  fovay 334 -
  vutay 314 -
  qorik 141 5.00
  vubos 313 13.01
  xeror 344 -
  vybon 312 5.31
  xudor 314 3.17
  fudax 313 11.83
  zuxum 332 1.93
  wyzox 433 -
  yaxer 434 1.71
  cuvax 133 -
  vozay 334 3.44
  cuzoc 131 -
  zoxum 332 1.40
  vabax 313 5.31
  zixam 332 0.99
  fofal 335 11.62
  fivoy 334 1.77
  buvax 133 -
  xumox 323 5.69
  vudas 313 2.88
  modos 213 8.22
  vofic 331 1.27
  vutol 315 5.19
  joxol 635 7.03
  yutox 413 5.27
  vyxon 332 2.52
  vevup 331 2.26
  zodum 312 2.04
  wevum 432 1.47
  jucid 611 2.33
  dydox 113 5.78
  pumol 125 1.05
  fuvun 332 1.92
  muvay 234 3.02
  vudic 311 1.55
  poyax 143 -
  noler 254 2.18
  zynol 325 2.04
  vufic 331 6.10
  zixol 335 0.99
  viviy 334 1.90
  koxas 133 0.41
  vobac 311 1.66
  vudec 311 5.72
  tayox 143 7.24
  zilyx 353 0.99
  luyul 545 2.92
  vaved 331 9.38
  vupel 315 1.55
  vypax 313 5.19
  vudax 313 27.16
  royaz 443 6.33
  duryx 143 2.73
  vudol 315 1.55
  vapux 313 0.50
  zinoc 321 5.69
  zovyk 331 2.54
  voyiz 343 9.86
  fetiz 313 0.37
  qerol 145 0.00
  koxil 135 0.41
  lovyz 533 2.88
  loyix 543 5.00
  bybix 113 1.28
  bofed 131 6.33
  vurin 342 3.23
  vazen 332 2.54
  hyqor 314 5.25
  wyzow 434 4.69
  totix 113 1.05
  doxay 134 -
  lixyl 535 0.00
  ryzim 432 0.99
  watif 413 3.43
  tevav 133 -
  xevix 333 1.49
  qidix 113 0.00
  vuvec 331 -
  nipod 211 0.49
  zayax 343 3.91
  lavun 532 3.70
  qonor 124 1.54
  pozen 132 2.04
  sosel 335 1.05
  vazyl 335 2.54
  wilic 451 2.02
  balac 151 0.52
  coboh 113 3.87
  nomel 225 1.05
  kejat 161 2.89
  sohor 334 7.23
  guvit 131 2.14
  muzuh 233 5.23
  juvyc 631 2.33
  vavov 333 2.08
  zojal 365 2.83
  quliv 153 4.25
  hixir 334 1.69
  wepuf 413 3.03
  nuvux 233 1.55
  zidux 313 0.99
  zylon 352 2.04
  sesef 333 2.06
  zupak 311 2.04
  noboh 213 3.87
  voras 343 1.55
  femez 323 -
  sinez 323 -
  zulec 351 2.04
  fevum 332 1.92
  vodiq 311 1.55
  widoz 413 8.14
  mytes 213 3.90
  yariq 441 0.58
  tupux 113 10.48
  lyzic 531 2.04
  mogux 213 1.75
  juvyn 632 2.22
  kisiv 133 1.08
  wiqet 411 0.97
  qovax 133 5.19
  wipux 413 0.97
  zojon 362 6.47
  jurux 643 9.84
  xalix 353 0.99
  hygic 311 2.40
  hilis 353 0.56
  sazay 334 -
  zotey 314 2.94
  toruq 141 1.05
  vudem 312 1.55
  vysal 335 1.55
  pypic 111 1.05
  qical 115 1.05
  cuvux 133 14.73
  wavat 431 1.88
  deqox 113 5.96
  vefut 331 0.87
  zoyac 341 6.00
  vusar 334 2.68
  pacol 115 1.05
  lyxar 534 1.13
  ciniv 123 1.08
  kivoc 131 0.50
  wisox 433 -
  gavum 132 1.20
  vubux 313 5.84
  fivay 334 6.61
  zazay 334 -
  tucus 113 1.05
  vopax 313 5.19
  miqos 213 6.89
  tixot 131 0.00
  qobon 112 3.32
  voyab 341 7.28
  zeyox 343 8.23
  zizot 331 1.98
  fexen 332 0.37
  nuvam 232 -
  zatam 312 2.04
  zizet 331 3.91
  dixel 135 0.00
  cabaz 113 -
  zanic 321 0.99
  begax 113 -
  nibax 213 4.81
  vufex 333 5.56
  qasus 133 1.05
  ruvam 432 -
  budax 113 11.67
  jurer 644 4.65
  vezil 335 1.49
  fuqet 311 5.71
  qovas 133 1.55
  zaroc 341 -
  fikay 314 6.11
  wajex 463 6.45
  cuned 121 2.11
  menos 223 8.22
  dogoz 113 8.28
  dezox 133 -
  nozov 233 -
  pizah 133 2.04
  tuyul 145 5.00
  pikav 113 -
  duxul 135 0.93
  vuxos 333 7.27
  wuxer 434 3.04
  teqer 114 2.18
  neloz 253 0.00
  givoc 131 1.20
  bexat 131 -
  nesux 233 0.00
  vuvul 335 2.05
  nyvix 233 1.55
  povem 132 -
  hejex 363 1.35
  jemox 623 6.56
  vovav 333 -
  moxur 234 1.54
  hoxed 331 1.78
  qanor 124 1.13
  vudur 314 2.68
  movym 232 11.57
  vojov 363 2.05
  jymex 623 6.56
  qalon 152 2.56
  lydax 513 4.69
  bewat 141 5.47
  cesot 131 -
  zunek 321 2.04
  huxey 334 5.03
  yerey 444 1.48
  hozet 331 2.60
  kavux 133 5.38
  cozok 131 5.69
  fumoc 321 5.64
  vypon 312 1.55
  tycer 114 2.18
  zuvil 335 2.54
  ryzus 433 0.99
  bivoz 133 7.78
  hosox 333 -
  qyler 154 2.18
  jeloc 651 0.79
  fasyt 331 1.42

References

[1] https://circleid.com/posts/20240903-unregistered-gems-identifying-brandable-domain-names-using-phonotactic-analysis

[2] https://circleid.com/posts/availability-analysis-of-brandable-variant-string-domain-names

[3] https://home.cc.umanitoba.ca/~krussll/phonetics/articulation/describing-consonants.html

[4] https://www.dyslexia-reading-well.com/44-phonemes-in-english.html

[5] https://www.atom.com/premium-domains-for-sale/all/length/5%20Letters

This article was first published on 8 January 2025 at:

https://circleid.com/posts/unregistered-gems-part-5-using-groupings-to-find-brandable-domains

No comments:

Post a Comment

Unregistered Gems Part 6: Phonemizing strings to find brandable domains

Introduction The UnregisteredGems.com series of articles explores a range of techniques to filter and search through the universe of unregis...